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Reactive burn model

1. EOS model
reactants, products
partially burned HE (mixture rule)

P(V ,e, ~λ) where ~λ = reaction progress variable(s)
Tacitly assumes partly burned HE is homogeneous
and in thermodynamic equilibrium

2. Reaction rates (empirical to account for heterogeneities)
Calibrate rate to detonation data
– Shock ignition regime

Pop plot data
Embedded gauge profiles
Complex loading conditions

– Propagation regime
Curvature effect
Failure diameter
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SURF model Rate

λ is mass fraction of products
s is reaction progress variable

λ = g(s)
= 1− exp(−s2) cylindrical hot spots

s = [− ln(1− λ)]1/2

ds/dt = Rate(Ps,P), Ps = lead shock pressure & P = local pressure

=

[
(P/Ps)

n for P < Ps

(P/Ps)
nhi for P > Ps

]
×R(Ps)

Standard rate

(d/dt)λ = (dg/ds)× (ds/dt)

= 2[− ln(1− λ)]1/2(1− λ)× Rate(Ps,P)

Cut-off for finite reaction zone: g(sc) = 1 at finite sc
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Rate R(Ps)

Fitting form 4 (LA-UR-17-31015, SURFplus model calibration for PBX 9502)
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Pressure regions
Ps < P0 rate=0, weak shock not effective at generating hot spots

P0 < Ps < Plow low pressure cutoff, R = C̃ (Ps − P0)
ñ

Plow < Ps < P1 ignition regime, R = C Ps
fn to fit Pop plot data

P1 < Ps < Phi propagation regime, high pressure cutoff
Phi < Ps hot spots saturate (can add bulk thermal rate)

Rate model has 8 parameters: P0, Plow , P1, Phi C, fn n, nhi
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Shock ignition: Pop plot data

ambient PBX 9501 ambient PBX 9502
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Ambient PBX 9502 Pop Plot

• PBX 9501 variation with porosity

• PBX 9502 variation with lot
Large systematic variation with initial temperature (-55 and 75 C)

• Scatter in data (6 % rms up to 30 % for outliers on log-log scale)
Experimental uncertainties and PBX heterogeneities
Rate model can not accurately fit all data

• Calibration data
Pop plot calibration should cover wide range in shock pressure
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Calibration to Pop plot data

Run distance from simulated lead shock pressure vs distance
Pop plot dominated by 2 model parameters: C and fn
Metric for calibration

rms relative error of run distance relative to fit to Pop plot data
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• Shallow trough in metric
Correlated changes in C and fn have small effect on metric

• Model Pop plot also affected by parameters
nhi and P1
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Embedded gauge data

PBX 9502 shot 2s86 (Gustavsen et al., 2006)
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• Transition-to-detonation should agree with fit to Pop plot data
Subject to scatter in Pop plot data

• Shock rise time due to small mis-alignment of gauge package
Gauge averages over about 1 cm transverse to propagation direction

• VN spike clipped due to response time of gauge (10 to 20 ns)

• Simulated shape of profiles depend on
model function g(s) and parameter nhi
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Curvature effect experiments

Unconfined rate stick
Diameter effect: axial detonation speed vs 1/radius
For curvature effect, also measure front shape
Dn(κ) determined parametrically from derived κ and Dn along front

Issue: For large κ, Dn depends on rate stick diameter
• Boundary layer within 0.5 to 1 mm of HE/air interface

– At boundary lead shock is sonic
and not supported by reaction along streamline

– Large transverse pressure gradient along shock front

• Assumptions of first order DSD theory break down
Outside boundary layer assumptions are valid

• HE weakly confined for almost all applications
Due to gap/tolerance at HE/inert interface

• Dependence on PBX lot =⇒ model uncertainty
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Unconfined rate stick
PBX 9502 experiments by Larry Hill

compare 3 diameters with normalized radius
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Dn depends on rate stick diameter
corresponds to boundary layer
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Curvature effect calibration

For small to moderate κ (when assumptions of DSD theory hold)

• ODEs for 1-D quasi-steady reaction zone profile
Front curvature κ is parameter
Trajectory starts at lead shock
Singularity at sonic point (u + c = D) unless σR = uκ (rate condition)

• Shooting problem
Vary Dn and evaluate trajectory
Until rate condition at sonic point is meet
Solution exists only up to moderate κ

• Slope of Dn(κ) depends on reaction-zone width to sonic point
Determined by rate in high pressure regime

• Extend ODEs to SURFplus fast/slow reactions
Dn(κ) curve has qualitatively different shape with carbon clustering
Alternatively, fast rate for λ < λswitch and slow rate for λ > λswitch
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PBX 9502 curvature effect
Dn(κ) from ODEs
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Curvature effect – fast/slow reaction

normalized curvature effect PBX 9501 diameter effect

0 0.5 1 1.5 2 2.5
κ (1/mm)

0.7

0.8

0.9

1

D
n 

/ D
cj

PBX 9501
PBX 9502

Curvature Effect

0 0.5 1 1.5 2

1/R (mm
-1

)

7

7.5

8

8.5

9

D
 (

km
/s

)

9501 diameter effect

• PBX 9501 – fast reaction only
Failure diameter less than 1.6 mm
Black triangles: bounds for diameter effect limiting detonation speed
DSD needs Dn(κ) to extend to smaller Dn than limiting Dn

• PBX 9502 – fast/slow reaction
Failure diameter approximately 9 mm
As κ increases: sonic point goes from end of slow to end of fast reaction

large change in reaction-zone width to sonic point
Red circle: detonation speed for 1 inch cylinder test
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Failure diameter and front shape

2-D simulations of unconfined rate stick
Experiments used to determine Dn(κ) and front shape

• Computationally expensive compared to 1-D shock initiation
Need to resolve reaction zone
Cylinder length at least 4 diameters
Iterate to fit failure diameter and limiting detonation speed

• Parameter n and SURFplus rate
n affects reaction-zone width and failure (but not Pop plot)

Lower rate for pressure decreasing gradient behind front
Important for non-planar shock initiation (fragment impact)

SURFplus slow rate important for curvature effect and failure

• Fit shape of detonation front
More robust to fit front shape than Dn(κ) for large κ
since κ depends on first and second derivative of front shape
Due to boundary layer, front shape more fundamental than Dn(κ)
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ZND reaction-zone profile
Experiments to measure 1-D reaction-zone profile have been tried
Large shot-to-shot variation in VN spike and reaction-zone width
Polarized light micrograph of PBX 9501 [Skidmore et al., 1998]

reactive HE
burn models
treat PBX as
homogeneous

Red lines 100 microns apart
Estimated reaction-zone width

25 to 75 microns < av grain size
Expect reaction-zone profile to vary

with local grain/binder variations

Red circles PDV probe spot size
500 micron diameter

Velocity varies over spot size
Number of grains small & variable
Profile varies due to poor statistics
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